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Abstract—Resilience in the information sciences is notoriously
difficult to define much less to measure. But in mechanical
engineering, the resilience of a substance is mathematically well-
defined as an area under the stress-strain curve. We combined
inspiration from mechanics of materials and axioms from queuing
theory in an attempt to define resilience precisely for information
systems. We first examine the meaning of resilience in linguistic
and engineering terms and then translate these definitions to
information sciences. As a general assessment of our approach’s
fitness, we quantify how resilience may be measured in a simple
queuing system. By using a very simple model we allow clear
application of established theory while being flexible enough to
apply to many other engineering contexts in information science
and cyber security. We tested our definitions of resilience via sim-
ulation and analysis of networked queuing systems. We conclude
with a discussion of the results and make recommendations for
future work.
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I. INTRODUCTION

This paper explores the meaning of resilience for compu-
tational systems. We apply an understanding of resilience used
in mechanical systems in hopes of discovering new ways to
measure resiliency in information systems.

We begin with a discussion of the semantics of the word
“resilience.” We identify several salient characteristics of re-
silience as it is defined in the material sciences and attempt
to translate these attributes for use in information systems.
Next, we propose a mathematical definition of resilience in
information space based on this direct translation.

Given our basic quantification of resilience we defined a
simulation environment where our definitions may be tested.
We conducted simulation studies and discuss the effectiveness
of the definitions. We conclude with recommendations for our
expected follow-on work.

II. BACKGROUND

Resilience may be defined in physical terms as, “the
capability of a strained body to recover its size and shape
after deformation caused especially by compressive stress”1,
or, “the ability of a substance or object to spring back into
shape; elasticity”2, or as, “the ability of a material to absorb
energy when it is deformed elastically, and release that energy
upon unloading”3(emphasis added).

1Merriam-Webster’s online dictionary
2The New Oxford American Dictionary
3Wikipedia

In information sciences, Rey et al. distinguish among
robustness, resilience, and dependability: “If the quality of
service is temporarily violated due to the magnitude of the
perturbation, the system is not robust, but it is considered
resilient, as long as it is able to recover and resume operations
within acceptable levels of service. The system is said to
be dependable if most of the time it provides an acceptable
service” [1]. Thus robustness has to do with the magnitude of
the tolerable degree of disturbance while resilience deals with
the elastic recovery of the system.

Most authors in information sciences define resilience
purely in terms of the availability of the system concerned [2]–
[4]. Others insist that beyond availability, resiliency includes
ability to withstand threats of an unexpected and malicious
nature and the classic protection qualities of confidentiality
and integrity [5], [6]. Some explicitly include defense and
recovery with respect to cyber attacks in their definitions
[7] and prototypes [8]. Arguably, one could include these
protection properties under the broad rubric of “operational
normalcy,” but we believe making security concerns explicit is
fundamental.

It is perhaps self-evident that many natural systems can be
described as resilient and that nature is an excellent storehouse
of resilient designs that can be emulated. Brand and Jax [9]
call out two distinct meanings of resilience, (1) engineering
resilience, the time required to return to a nearby equilibrium
point following a disturbance, and (2) ecological resilience, the
amount of disturbance a system can absorb before changing
to a new equilibrium point, possibly distant from the original,
“controlled by a different set of variables and characterized by
a different structure.”

Because most engineered systems are incapable of com-
pletely reconfiguring themselves in the face of a severe distur-
bance, we define resilience as returning to a nearby equilibrium
point but do not quantify it in terms of time. We realize that a
goal of computational system engineering is to make systems
that are resilient by the second definition, and initial attempts
to achieve this are underway [10]. For now, however, we will
be satisfied to lay the groundwork for a quantifiable definition
of engineering resilience in the hopes that our definitions may
be extended to measure the success of a system claiming
something like ecosystem resilience should one be designed.

Clearly, under some set of circumstances, all systems
will fail. Resiliency in the engineering sense is not about
preventing failure but in managing how the system behaves
during failure and recovery. We must be careful not to sloppily
redefine resilience as goodness. In engineering, “goodness”
must always be quantified in terms of relative cost, and the
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cost of resilience must be considered relative to the cost of
the kinds of failure anticipated.

If the cost of unmanaged failure and recovery is low
enough, a brittle system may be an appropriate solution.
Resilience may be bad if employing it costs more in lost
system performance than the cost of occasional system failure
and recovery. For instance, rebooting a personal computer
or restarting a hung application is a common, if unpleasant
occurrence. The cost is relatively low and the safety risk is
zero. However, restarting a nuclear reactor or a space life-
support system has much greater cost and the risks can often
be measured in lives. In this case, resilience is required.

While these remarks have clarified the value of resilience
and its meaning, this paper is not primarily about assessing
whether resilience is good or bad in any particular engineering
context. Instead, we concentrate on quantifying how resilience
may be measured with respect to a phenomenon like the
dropping of packets or jobs in a queuing system. We expect this
simple application will allow clear application of established
theory while being flexible enough to apply to many other
engineering contexts in information science and cyber security.

III. APPLYING THE CONCEPT OF RESILIENCE

To apply definitions of resilience to various domains we
must find analogs for:

• The subject that bears the load (e.g., the body, substance
or object)

• The measured attributes of the subject (size and shape)
• The stress or per-unit-area force loaded upon the subject
• The result of this stress, (deformation or strain)
• The behavior of the object after deformation (elasticity or

energy unloading)

A. Resilience in materials

In material systems resilience is defined in terms of the
relationship between stresses exerted on an object and the
strains (or deformation) that object exhibits. Stress is defined
as average load (force), P , per unit area, A, where force is
the product of mass and acceleration, and area, dimensionally,
is squared length. In material systems, strain is a measure of
physical displacement (length) at a given stress level.

In material science, materials deform elastically up to
a certain amount of stress after which permanent distortion
occurs. The strain point where this distortion occurs is called
the “yield point.” The modulus of resilience of a material is
the maximum energy that can be absorbed per unit volume
without creating a permanent distortion and may be calculated
as the area under the stress-strain curve (Fig. 1a) from zero
stress up to the yield point [11, p. 698]. Thus, in materials
science, resilience is a well-defined phenomenon.

Not all materials have a yield point, however. Some ma-
terials rupture prior to yielding, others form a strain hardened
“neck” after yielding, and still others both form the neck and
“draw” more material into the neck. The resulting nonlinear
relationship between stress and strain characterizes the mate-
rial’s toughness and resilience and can be analyzed via the
Considère construction (Fig. 1b) [12].

(a) Engineering stress-strain curve for a ductile material

(b) Considère construction for true stress-strain curves

Fig. 1: Types of stress-strain curves.

The first type of materials are brittle (Fig. 1b, curve a), and
they fracture at the yield point. No secant line can be drawn
from the origin to form a tangent with this kind of curve.
The second type, the ductile materials, (Fig. 1b, curve b) thin
to a neck after their yield point. Only the neck absorbs the
remaining strain, and the material will break there. A single
secant line can form a tangent with the curve at the yield point.
The third type of material is the elastomers (Fig. 1b, curve
c), which also form a neck at the yield point. But additional
stress causes elastomers to undergo a structural transformation.
Strain-hardening causes material from the shoulders adjacent
to the neck to flow into the neck region. As stress increases,
these materials exhibit a second round of strain hardening
marked by the second secant-line tangent point.

The shape of the stress-strain curve contrasts the failure
modes of brittle, ductile, and elastic materials. Brittle materials
may be very strong, but they fail suddenly, often without
warning. Ductile materials deform before failure indicating
overloading and providing some warning [11, p. 32]. Elastic
materials are highly resilient, and they may or may not deform
before they fail, but the strain is obvious when stress is applied.
Brittleness is not pejorative—concrete is brittle, but it is used
ubiquitously. Sudden failure may be acceptable if in trade, one
can eek out a bit more pre-failure performance.

The modulus of toughness [11, p. 697] is equal to the area
under the entire stress-strain diagram to the point of rupture
(Figure 1a). It represents the energy per unit volume required



to cause the material to fracture. A material’s toughness is its
ability to absorb energy. Since resilience is a subset of tough-
ness in material science there is no conflict between them.
All other things held constant, if the modulus of resilience is
larger, the modulus of toughness would not decrease.

B. Resilience definitions for information systems

An argument could be advanced that material systems
are much less complex than information systems and direct
comparison is not reasonable. While this is likely true for
simple, man-made materials, biological materials are far more
complex and contain intricate hierarchies of proteins, microfib-
rils, and other structures laid out with all the complexity of a
program. These materials exhibit highly nonlinear stress-strain
reactions [13], [14] that are only poorly understood at this
time. However, the same stress-strain analysis can shed light
on these complex behaviors.

Even though material stress can dimensionally be reduced
to just mass, distance, and time, translating the physical units
to equivalent units in information space is nontrivial, making
resilience much more difficult to define in this domain. For
instance, area (distance) is not a well-defined dimension in
information space. There is no concept of absolute direction
and thus no velocity vectors. Although there are locations in
cyber space, without the concept of direction, relative location
is not well defined in any meaningful sense. Similarly, material
strain is a measure of physical displacement (length) at a given
stress level, but length is not well-defined in cyber space.

To enable clear discussion of the meaning of resilience in
information systems, we adapt terms from material mechanics
[11] using ideas from queuing theory [15, pp. 505–626]:

a) System: A collection of queues and their attendant
consumers that process submitted jobs. The queues may be
interdependent and the entire system is the subject of the stress.

b) Load: The amount of work the system is given
to perform each unit of time. Work includes reception and
queuing of jobs, execution of jobs and delivery of output.

c) Capacity: The sustained load that can be accom-
plished per unit time. Capacity may aggregate resources such
as number of queues, number of processors, memory, etc.

d) Stress: The load divided by the system’s capacity. In
a network of parallel queues, stress would be the load divided
by the number of queues.4 In material science physical defor-
mation causes a difference between “true” and “engineering”
stress/strain, but in information systems as long as there are
no nonlinear performance changes caused by stress, there is
no difference.

e) Strain: Alteration of the system’s performance
caused by the work it must perform. In material systems strain
measures the physical change in length of a sample at a given
stress level compared its resting dimensions. Naı̈vely, in cyber
systems, displacement might be measured as changes in the
response time at a given stress level. However, measuring
displacement in terms of time rather than in units analogous to

4We consider only the number of queues not the total buffer positions
because the definition of strain takes this capacity into account.

some length metric causes lack of orthogonality problems that
make the candidate metric difficult to combine with others.

Strain may be related to queue length or other performance
indicators. In a simple queuing system, the strain on an
individual queue is the number of jobs in the queue at a given
load, minus the queue length when the system is under zero
load, divided by the capacity of the queue (number of buffers).
Since zero load produces zero queue length, strain is simply
the sum of the current queue lengths divided by the sum of
the queue capacities.

f) Resilience: The workload the system can accept
up to the point of a non-recoverable fault. Please note that
the concept of post-failure recovery is not found in material
science, although it is found in biology. Unless the system
crashes, cyber systems are often resilient up to the crash point–
they return to their original capacity once the excess load
is removed. Failure points caused by things like deadlock or
memory leaks could be modeled by introducing an arbitrary
failure point that happens stochastically after some amount of
loading or uptime.

g) Toughness: The closest analogue to toughness as
defined in material engineering may be what information sci-
entists call “robustness.” We arrive at that conclusion because
toughness has to do with the strength at the rupture point of
the material. Similarly, robustness is the ultimate ability of the
system to accomplish workload even beyond the point where
fatal faults have happened and eventual failure is certain. By
this definition, the robustness of a system will never be less
than its resilience.

Because resilient systems emphasize fault tolerance it may
seem they must trade in some robustness to gain reliability,
but hybrid approaches are possible and the simulation results
we present later illustrate this. The system characteristics
that are actually in conflict are brittleness and ductility. We
do not redefine these characteristics for information systems
quantitatively, but, given the above, one might expect robust
to mean, “strong but brittle” and resilient to mean “possibly
weaker but ductile.”

A robust system should maintain optimal performance even
when it is very close to failure. When it fails, it may fail
suddenly if it is also brittle. In contrast, one would expect
resilient systems to be more characterized by ductility. A
resilient system may gradually deform (perform worse) with
increased stress, but it should be able to absorb much stress
without failure and it should be able to recover quickly once
it does fail. Hybrid systems are possible and often desirable.
Interestingly, if a system is resilient all the way to the point of a
failure (e.g., there is no yield point where the system continues
to operate but will fail) the modulus of resilience equals the
modulus of toughness, and resilience equals robustness.

C. Cyber resilience defined quantitatively

For this work we consider a simple system with a set of job
generators (the clients) and a a set of servers that process the
jobs. Servers are modeled as M/M/1 queues.5 Although this
model is very limited, it is also flexible enough to adapt to

5An M/M/1 queue has exponential arrival and service rates and is served
by a single processor.



many applications via added behavioral rules and constraints.
In this section we will analyze the dimensions of the problem
previously laid out and apply them to information space.

a) Load: Two kinds of load must be considered sepa-
rately even for a simple queuing system: (i) the number of jobs
arriving at a given time, Lj , and (ii) the amount of resources
required to process the jobs at that time, Lp.

In queuing theory, the queue length is a function of the
mean arrival rate (λ) and the mean job service rate (µ). Traffic
intensity (ρ) is the ratio of these values (ρ = λ

µ ). Thus, if a
queuing system receives 150 jobs per second and processes
only 100 per second, the traffic intensity is 1.5. This makes
Lj simply 1/λ.

Lp is intuitively the load due to the size of the jobs. In
information systems this can only be reckoned semantically
and may best be measured by the amount of computing power,
memory, storage, and other resources that will be required
to process the information. The number of bits required to
represent a job is really no indication of its impact on the
computing resources. In general we do not know size a priori.
For simplicity we reduce all the dimensions of size down to
the mean number of resources required by a job.

Job resource requirements are only important when the job
is executing, and they may grow and shrink over time. If the
number of resources required by executing jobs exceeds the
available resources, we risk a system crash.

We hide the multitude of details by modeling the process-
ing size of a job as a Poisson random variable, S whose
value is known only after the job is completely processed.
Then the processing load on a system is, Lp =

∑k
j=1 Sj at a

given time, where k is the number of jobs currently executing.
Unfortunately, because the units are so different, Lj and
Lp must be analyzed separately. Our simulation implements
calculation of Lp, but we assume it to be negligible in our
stress-strain analysis.

b) Capacity: Internally, each M/M/1 queue has a job
capacity Cj equal to the number of queue buffer positions
plus the number of buffers for executing jobs in the processor
(typically one). But from the outside, the job capacity of the
overall system is q, the number of queues available (regardless
of size).

The processing capacity, Cp, is a static number of resources
available at a time. For simplicity, we consider the processing
capacity to be somewhat equivalent to the available CPU power
making CPU utilization an apt measure of the stress on the
system. We save the study of utilization for future work.

c) Stress: We define stress as the load over the capacity,
and since we are talking about dynamic systems, we must
measure it per unit time. We adopt the material science notation
σ for stress and define engineering stress, σe, as a polynomial
over the sources of stress (job arrivals and resource usage) as
shown in Eqn. 1.

σe = a(Lj/q)
b + c(Lp/Cp)

d (1)

σt = σe(1−
jobsdropped

jobstotal
) (2)

For some constants a, b, c, and d. To simplify our analysis
we set all the constants to one and set Lp = 0, making
σe = Lj/q. “True” stress could take into account the pro-
portion of dropped jobs produced by a given regimen (Eqn.
2). This assumes that dropping jobs is undesirable; however,
dropping jobs may be a resilience strategy to avoid a crash.
So the appropriateness of true stress as a metric depends on
the needs of the designers.

d) Strain: For a simple queuing system, the queue
length, n, is the natural measure of strain on the system and
it is unitless, avoiding orthogonality worries. Physical objects
have a nonzero resting length, but the resting queue length of
an information system should be zero. Thus, any utilization of
the system induces strain.

Strain must be normalized both in material and informa-
tion systems to keep measurements comparable. In material
systems, standard strain, ε is deformation distance divided by
the length of the sample. In information systems, the same
approach allows us to say that ε = n/Cj .

e) Resilience: Resilience may now be simply defined
as the area under the stress-strain curve of a given information
system. What remains is to show what this curve looks like and
determine whether one system that is arguably more resilient
than another actually shows a higher resilience using this
method.

Since resilience includes recovery effort, lost processing
capability during recovery time may be added to measure the
system’s elasticity. This may be measured by summing the
instantaneous resilience metric over time and subtracting out
the portion that would be missed during downtime. However,
we do not include recovery time in this analysis.

IV. ANALYZING CYBER RESILIENCE

For over half a century, queuing theory has been used
to make theoretical predictions about the operation of real
information systems. Queues provide a highly flexible mod-
eling approach and are well studied. We may assign artificial
behaviors and constraints to queuing models and network them
in a variety of interdependencies to model the behavior of even
complex information systems.

For instance, to model resource exhaustion, we may make
a queue accept jobs more slowly as it becomes more full. A
system crash may be illustrated by making a queue drop all
current jobs and not accept new ones for a period of time.
To emulate system errors, we may selectively drop jobs, or
process them and not return them. Complex systems may be
represented by having queues send jobs to one another in
arbitrarily complex networks.

Under the assumption that queuing models provide an
adequately flexible primitive for real systems, we next discuss
our queue-resilience simulation model and analyze some of
its results to determine whether our proposed measures of
resilience hold true.

A. Simulating cyber resilience

To simulate resilience behavior of various system configu-
rations, we created a discrete-event simulation in NetLogo [16]



representing a set of clients and servers in a job-processing
system arranged in a fully connected bipartite mesh. Each
client may send jobs to any server and, depending on the
policy, the servers may send jobs to one another. Every time
step each client generates a number of jobs determined by a
Poisson random variable and sends them to various servers
for processing. The servers form an open network of M/M/1
queues [15, ch. 32].

If a job arrives at a server whose queue is full, depending
on the queuing discipline, the queue may drop the job or
forward it to another server that is less full. The policy selected
will affect the resilience of the overall system. When a job is
complete, the processing server returns the job to the client
with the run statistics collected for that job, and the client
records them. Jobs that successfully return to the client are
tallied as complete, and the system keeps statistics on the fate
of all jobs whether complete or dropped.

As discussed previously, the size of each job is a priori
unknowable because of the halting problem. In the simulation
we thus use a Poisson random variable with a user-selectable
mean whose value can be randomly generated at arrival at the
server—no job takes less than zero time to complete and any
job may never terminate, although we consider the probability
of a non-terminating job to be remote normally. To simulate
malicious jobs it would be simple to create jobs with very
high resource demands that would cause the server to hang or
crash. By default, we assume the same mean size for all jobs.

Similarly, we define the capacity or processing power of
each server in terms of the job size it can complete in unit
time. The server’s capacity is subtracted from the remaining
duration of the jobs it has to work on each time step. If a
server finishes executing a job and has remaining capacity it
immediately begins executing another job.

Additionally, every job has a resource usage that can-
not be known in advance. The resource usage represents
in a single value all the potential system resources a job
might need (e.g., disk space, stack/heap allocations, shared
resources) as it executes. Because jobs are dynamic, the
resource usage may change over the job’s lifetime. We assume
non-decreasing resource usage of four types: unit-sized non-
growing, exponential-sized non-growing, linearly growing by
unit size, and exponentially growing. This nuance allows us
to investigate the effects of resource exhaustion in a limited
sense.

We have enabled two policies for handling arriving jobs: a
dropping policy and a forwarding policy. The dropping choices
are either to simply drop arriving jobs when the queue is full or
to have an exponentially increasing chance of dropping them
as the queue fills. Given n, the current count of jobs in the
queue, and b, is the maximum the queue can hold, gives the
dropping probability for each policy:

p(drop) =

When full: =

{
n < b : 0

n ≥ b : 1
Exp. prob.: = p(en/b > r); r ∈ [0, e]

(3)

The forwarding policy is simply a boolean value, which, if true
causes queues to forward jobs to another randomly selected

queue with fewer jobs. If no such queue is found the job is
dropped. This enables emulation of load sharing. Because the
actual size of a job is not knowable in advance, queues may
only make forwarding or dropping decisions based on how
many jobs are currently queued, not on the size of jobs queued
or in process. A busy queue cannot predict when it will be free
other than by its queue length.

Forwarding and dropping may be combined to yield four
policies: Control: drop when full, Expdrop: drop with expo-
nentially increasing probability, Forward: forward when full,
and Expfwd: forward with exponentially increasing probability.
We refer to these strategies by their labels hereafter.

B. Experiment

The question this paper seeks to answer is whether re-
silience can be characterized and computed for information
systems just as it can for material systems, and whether there
is more than one type of resilience for these systems. Thus we
must derive usable measures of stress and strain and determine
whether these metrics are actually useful in characterizing and
comparing systems and resilience strategies.

Defining resilience with respect to (w.r.t.) queues implies
an overfull queue is a failure state. Resource exhaustion attacks
like distributed denial-of-service (DDoS) attacks against a web
server can be modeled in this way. The individual jobs are
usually requests for information that are not as important as
the availability of the server itself and can be easily reissued.

Defining resilience w.r.t. jobs implies that the jobs them-
selves may be critical and that to lose one is worse than almost
anything shy of bringing the whole system down. This is the
approach taken by the Linux Out-of-Memory (OOM) Killer
[17]. The OOM Killer tries to selectively sacrifice noncritical
jobs when the system is running critically low on its free
memory. It scores each job by its likelihood of being something
that the user really cares about and is more likely to kill jobs
that will (1) release a lot of memory, (2) are lower priority,
and (3) are not hardware controllers.

Given our definition of resilience as the area under the
stress-strain curve, our hypothesis was that Expdrop would be
the most resilient policy for keeping the queue from overload-
ing. This is because it preemptively begins dropping jobs as
the queue fills. Similarly, we expected Forward to be a more
resilient policy than Control w.r.t. jobs because if one queue
should fail, the job is not lost, it would simply be shunted
to another queue. We expected that Expfwd should be more
resilient than Forward w.r.t. jobs for the same reasons that
Expdrop should be more resilient than Control w.r.t. queues.

C. Simulation results

We ran our discrete-event simulation with five clients and
five servers under all four policies at varying traffic intensities6

from ρ = 0.5 to 6.0 for 20,000 time steps, ignoring the first 700
time steps to allow the queues to reach a stable state. Queue
length for all queues was 30 plus one job in execution. At
ρ = 2.0 20,000 steps produces about 750,000 jobs per client
scenario and an average of 3,740,000 for all five clients.

6Recall that traffic intensity, ρ, is the ratio of the arrival rate over the job
processing rate.



We then calculated means of the following at each ρ level:

1) job arrival rates,
2) job completion rates (counting only jobs that were not

dropped),
3) number of jobs in the queue at the time of job arrival,
4) number of jobs dropped by the queue at job arrival,
5) system strain level due to job arrivals,
6) system true stress level due to job arrivals, and
7) system engineering stress level due to job arrivals.

Although we gathered observations on response time, wait-
ing time, throughput, etc. we did not include them in our
analysis. We also did not conduct any analysis of stress or
strain due to job processing. These we leave for future work.
Fig. 2 shows the plots of the stress-strain values for each traffic
intensity and lists the area under the curve (AUC), or modulus
of resilience for each policy.

We note that the curves in Fig. 2a exhibit a smooth, non-
decreasing ‘S’ shape without a linear-elastic section, yield
point, or ultimate strength. Early in this research, we were
dismayed that our stress-strain curves for queues showed none
of these. To remedy this we attempted to identify functional
“yield” and “rupture” points at the knees of the curves, but
this overfitting turned out to be unnecessary as many materials
do not have a yield point either because they are nonlinearly
elastic (as seen in Fig. 1b, curve c) or because they are
exceptionally stiff and brittle and break before they yield. The
latter we would define more as robustness than resilience.

The shape of our curves closely resembles stress/strain
curves for elastomer materials that typically are very resilient
and tough. This means that the queue has a lot of extra capacity
that is not used until the stress increases enough to mostly fill
the queue. We expected a more linear queue-filling response
to traffic intensities. We also note that although the values of

ρ from 0.5 to 2.0 are evenly spaced at 0.05 intervals, in all
the curves, there is a marked sparsity of points near ρ = 1.0.
The queue length undergoes a relatively rapid transition from
mostly empty to overfull at around this point.

The sparsity of points at ρ > 2.0 arises because we used an
interval of 0.5 at high levels to reduce the time required by the
simulations. All the policies would eventually asymptotically
reach a strain of 1.0, but choosing a maximum of ρ = 6.0
allowed us to compare the curves acceptably fairly. Since these
curves do not have a yield point, the entire area under each
curve is that policy’s modulus of resilience. Expdrop had the
most resilience even though we were unable to drive that curve
to its asymptotic maximum. Interestingly, the Forward and
Expfwd policies performed worse than the Control strategy.

Fig. 2b compares the strategies using our measure of “true”
stress, where stress is only counted for jobs that complete.
Interestingly, all the strategies appear to perform similarly,
and all only reach a true stress level of 1.0 even though ρ
reached 6.0 in all cases. This makes sense because above
ρ = 1.0 jobs must be regularly dropped since the queue will
be full. By this metric, the modulus of resilience is practically
indistinguishable regardless of the strategy.

Our measure of resilience rewards algorithms for keeping
the queue length short under increasing traffic intensities. We
would expect the most resilient methods would also have the
worst utilization of the total queue buffer space. Similarly, if
we care about resilience with respect to jobs, not queues, then
a resilience strategy that depended on dropping jobs would
be bad even if it risks crashing the whole system. From this
viewpoint, the strategy that (on average) drops the fewest jobs
is the most resilient with respect to job survival.

If we plot the queue length vs. the number of dropped
jobs at various values of traffic intensity (ρ) we obtain curves

(a) Engineering stress vs. strain (b) “True” stress vs. strain

Fig. 2: Multiple queue simulations comparing engineering and “true” stress-strain at varying traffic intensities. The enlarged
symbols mark the points where ρ = 1.0 on each line.



Fig. 3: Comparison of queue length vs. dropped jobs. The
enlarged symbols mark the points where ρ = 1.0.

like those shown in Fig. 3. If area under the curve gives
an indication of resiliency, Expdrop is the least resilient and
Forward the most with respect to jobs. The results are nearly
the inverse of resilience w.r.t. queues. Resilience results are
summarized in Table I and discussed in section IV-D.

TABLE I: Moduli of Resiliency for each policy with respect
to queues and jobs. Ranks are given after each modulus.

Modulus of Resilience
w.r.t. queues queues excl. drops w.r.t. jobs

Control 1.036 #2 0.889 #2 0.6375 #2
Expdrop 1.277 #1 0.839 #4 0.4885 #4
Forward 0.921 #4 0.864 #3 0.6646 #1
Expfwd 0.972 #3 0.890 #1 0.6001 #3

D. Discussion

Considering first the results shown in Fig. 2a we see that
Forward and Expfwd policies have flatter growth along the
majority of the queue lengths and much sharper upturns toward
the end than the other two. We interpret this to mean that these
policies avoid dropping jobs as much as possible until all the
queues are full, then they all dump the extra jobs together. At
first glance we would not consider this capacitative behavior
resilient, it could be considered highly robust but brittle—it
withstands failure until all queues fail, then it fails massively.

The forwarding policies may recover more quickly because
they dump jobs in large batches, but recovery time cannot be
observed directly in the data. Expfwd ameliorates the behavior
of Forward by forwarding jobs earlier and with increasing
likelihood. This is borne out by the slower asymptotic ascent
at the end of the curve.

Resource-exhaustion attacks can crash systems using for-
warding strategies, but if there is enough redundant provi-
sioning the job-dumping behavior may allow them to quickly
recover and work at peak utilization again. However, the
forwarding approaches cheat a bit because the time it takes

for a job to be rerouted actually functions as additional queue
length, giving them added resilience up to the point of total
failure. Then when all the queues are full all the transmitted
jobs get dropped until more processing space is available.

In contrast to the forwarding strategies, the Expdrop policy
has a smooth curve showing clearly how more jobs are dropped
as the average queue length grows. At a given traffic intensity
Expdrop will never drop as many jobs as the forwarding
policies and the queues almost never become full. Thus, no
recovery by dumping masses of jobs is necessary.

The Expdrop policy has the most regular spacing of the ρ
points of all the curves. Thus, we expect it to fail more gently
than control and under greater stress levels. Expdrop shows
resilience because it never reaches the strain levels of the other
three policies at the traffic intensities tested. A strategy like
this may reduce the effects of resource-exhaustion attacks, but
throughput and utilization may suffer, although we did not
collect data on those quantities for this experiment.

The Control policy takes the middle ground, appearing to
get neither maximal utilization out of the queues nor avoiding
resource exhaustion. But this does not exclude it from being
considered as a potential solution when selecting an algorithm.
Interestingly, Control is consistently the second-best policy.
Thus, one might consider Control the most resilient given its
consistency in all conditions.

Considering now the results from Fig. 2b we see that the
strategies are nearly identical when stress is only counted from
jobs that are not dropped. Since dropping jobs is the primary
means of enacting resilience w.r.t. queues, it is not surprising
that penalizing an approach for dropping jobs would erase the
advantage of doing so. But the near identical curves in Fig. 2b
do show that when dropping is not taken into account, the
approaches are nearly identical. The only remaining discernible
difference is that the forwarding strategies fill their queues
more quickly at lower traffic intensities.

The results shown in Fig. 3 show that Expdrop is clearly the
least resilient policy w.r.t. jobs. This is because it preemptively
drops jobs long before the queue is nearly full. Forward is
clearly more resilient than the others for ρ ≤ 1.0 but less
distinctly the winner for high values of ρ. Contrary to our
expectations, Expfwd was less resilient w.r.t. jobs than For-
ward. This seems to occur because the preemptive forwarding
puts many more jobs in the netherworld between queues than
Forward. Thus, when the queues do ultimately fail, many more
jobs are dropped.

V. CONCLUSION

The metrics of resilience we selected work as desired, and
they highlighted features of the policies that were previously
unnoticed. Failure and recovery modes became clearer under
the light of this analysis and we were able to see quantifiable
differences in policy behaviors. Our analysis also explains why
resilience and robustness are different but so often confused.

Queuing models may be modified to represent most any
system behavior. Thus, our approach will enable us to test
resilience models against most any kind of system with mea-
surable and interpretable results. To test a given information
system for resilience, one must be able to measure the strain



induced at varying stress levels. Then the resilience of various
strategies can be compared directly.

This analysis can also be done indirectly by analyzing a
queuing model abstracted from the real system. Using the met-
rics we have described, abstract models with sufficient fidelity
to the real systems can predict performance characteristics of
those systems quantitatively.

A. Future Work

Much more work is required to bring our approach to
fruition. We must understand whether other concepts such
as yield points and ultimate strengths from materials science
might translate to information science. We must investigate
the behavior of processing stress and strain to see if it is
different from that of queuing effects seen in job-arrival stress
and strain. An indication of the effects of recovery time is a
worthy follow-on research topic. Then we must find a way
to combine these multiple dimensions of stress and strain to
establish a holistic view of information-system resilience.

We must also seek metrics that will tell us what kind of
resilience is important in a policy or algorithm for a particular
use. It is interesting but insufficient to simply differentiate al-
gorithms quantitatively. More direct mapping of the theoretical
queuing models here to real-world systems must be made. Our
method is sound, but we do not fully know which kind of
resilience is “good.” Further research may enlighten this.

Our simulation focused on two types of resilience: w.r.t.
queue and w.r.t. jobs. These translate roughly into resilience
of availability and resilience of integrity. We did not directly
address confidentiality as Bishop, et al. insist resilience must
[5]. However, availability applies not only to the system, but
also to its cyber defenses. Through further research, we hope
to show that availability resilience of the cyber defenses results
in the inability of an adversary to disable or deny the defenses
and thus can result in improved resiliency of confidentiality,
integrity, and availability of the entire system.

B. Contributions

We have defined resilience in a quantifiable way as the
area under a stress-strain curve, and the definition itself adds
clarity to the discussion of the nature of resilience. Obviously,
material science theories are not directly translatable into
information spaces because of the very different natures of
matter and information. However, by framing the discussion
this way, we have begun to define resilience quantifiably for
information systems with metrics that support our definitions.

Quantifying resilience of simple systems is the first step
towards quantifying resilience of complex systems. We believe
that just as queuing models have been very useful in engi-
neering real-world systems, so resilience studies of this nature
hold great promise. Queuing has, after all, been studied for
about half a century, and many applications have arisen from
it. Mechanical engineering has grown over many centuries to
the state it is now. We hope this new way of thinking about
resilience in information systems will be another success from
synthesizing learning from established fields.
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