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Abstract

The problem of finding frequent subgraphs in large dynamic graphs has so far only consid-
ered a dynamic graph as being represented by a series of static snapshots taken at various
points in time. This representation of a dynamic graph does not lend itself well to real
time processing of real world graphs like social networks or internet traffic which consist
of a stream of nodes and edges. In this paper we propose an algorithm that discovers the
frequent subgraphs present in a graph represented by a stream of labeled nodes and edges.
Our algorithm is efficient and is easily tuned by the user to produce interesting patterns
from various kinds of graph data. In our model, updates to the graph arrive in the form
of batches which contain new nodes and edges. Our algorithm continuously reports the
frequent subgraphs that are estimated to be found in the entire graph as each batch arrives.
We evaluate our system using five large dynamic graph datasets: the Hetrec 2011 challenge
data, Twitter, DBLP and two synthetic. We evaluate our approach against two popular
large graph miners, i.e., SUBDUE and GERM. Our experimental results show that we
can find the same frequent subgraphs as a non-incremental approach applied to snapshot
graphs, and in less time.

Keywords: Dynamic graph mining, Frequent subgraph mining.

1. Introduction

One of the important unsupervised data mining tasks is finding frequent patterns in datasets.
Frequent patterns are patterns that appear in the form of sets of items, subsets or substruc-
tures that have a number of distinct copies embedded in the data with frequency above
a certain user-defined threshold. While frequent pattern discovery is a computationally
difficult problem, it is has applications in other data mining tasks such as associative classi-
fication, clustering, cube computation and analysis, gradient mining and multi-dimensional
discriminant analysis (Han et al., 2007). Frequent pattern mining also has major applica-
tions in creating indices for efficient search, mining spatiotemporal and multimedia data,
mining data streams, web mining, software bug mining and system caching. There have
been many extensions to the frequent pattern mining problem for datasets with uncertain
data (Aggarwal et al., 2009), sequences (Wang and Han, 2004), and graph data (Kuramochi
and Karypis, 2005), (Yan and Han, 2002), (Cook and Holder, 1994).
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Mining graph data has become important with the proliferation of sources that produce
graph data such as social networks, citation networks, civic utility networks, networks
derived from movie data, and internet trace data. One of the important characteristics
of these sources of real world graph data is that they are rich with information at the nodes
and edges, as well as being dynamic in nature. When looked at from a graph perspective,
the dynamics are manifest in three different ways:

1. Edge / Node additions: New nodes and edges are being added to the network over
time.

2. Edge / Node modifications: The attributes of the nodes and edges already present in
the graph are modified over time. We restrict our graphs to containing labels on the
nodes and edges, i.e., we do not allow unlabeled nodes or edges.

3. Edge / Node deletions: Nodes and edges previously present are being removed from
the network.

Moreover these dynamics can be represented in two different ways in a graph: (a) by repre-
senting a dynamic graph by a series of snapshots of static graphs, and (b) by representing
a dynamic graph as a stream of node and edge updates to the graph. Recent trends in big
data have, however, necessitated a migration to the latter form of representation for real
world dynamic graph data.

In this paper we assume that our graph data has streaming updates in the form of node
and edge additions. We do not consider the case where nodes and edges are also being
deleted (or modified) as that would require decrements (or decrements and increments) to
the counts of frequent subgraphs already discovered. This would be in involved procedure
as we would have to go back over the list of frequent subgraph instances, drop the ones
whose components had been deleted, and then recompute the support. We also assume the
graph is attributed, i.e., nodes and edges each have a label.

We explain the scenario in which our algorithm operates as follows. We assume the
graph grows in batches of updates, where each update consists of new nodes and edges
that are being added to the network. We do not allow the presence of multi-edges. Our
proposed algorithm estimates the frequent subgraphs present in the entire graph as each
batch of updates is added to the graph. A crucial requirement for our algorithm is that it
reports the frequent subgraphs present in a timely manner. The contribution of this paper is
thus an algorithm that discovers frequent subgraphs in large graphs with streaming updates
to the graph.

In addition to some of the general motivations behind frequent patterns mentioned
above, frequent subgraphs also have the added importance of being characteristic of a
certain graph. This means that we can use frequent subgraphs to monitor the health of
a network as it evolves. This is important for a cyber-security analyst who is monitoring
a large cyber-network and may be alerted to a potential attack due to the change in the
frequent subgraphs. Frequent subgraph sets can also be used as generative models for large
networks (Laxman et al., 2007).

Much of the previous work in the area of frequent subgraph mining has focused in
the area of mining static single large graphs or graph transactions. Recent forays into
extending frequent subgraph mining for the streaming scenario have focused on streams of
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graph transactions (Bifet et al., 2011). Frequent subgraph mining is a hard problem to solve
because of the involvement of graph isomorphism and subgraph isomorphism which are in
NP and NP-Complete respectively. Finding FSGs (Frequent Subgraphs) in single large
graphs is further complicated by the need to find the maximal number of non-overlapping
instances of a candidate FSG in order to maintain the anti-monotonicity property of FSGs.
We draw inspiration from the multitude of papers that have been written in the area of
finding frequent subgraphs in graph transactions. One of the important properties of FSG’s
in graph transactions is that a subgraph is only counted as being present or absent in a
particular transaction. This avoids having to find multiple occurrences of the subgraph in
the transaction, and especially determine the size of the maximal set of the non-overlapping
occurrences. Thus in our paper we propose a method to convert the problem of finding FSGs
in a single large dynamic graph with streaming updates to a streaming graph transaction
scenario. We realize that in order to identify which frequent subgraph instances are being
changed, we need to only look at those regions of the graph that are being subject to change
by addition of new edges and nodes. Thus we propose a method of sampling a region around
the graph that has just been changed in order to form a graph transaction. With this set
of graph transactions we can use any graph transaction miner to find the set of frequent
subgraphs. We also keep track of the frequent subgraphs that are part of the global graph.
We run experiments with two synthetic graphs and three real world graphs to evaluate our
approach.

The rest of the paper is organized as follows. In the next section, we cover the related
work in the area of mining dynamic graphs as well as frequent subgraph mining. In section
3 we define some of the terms related to frequent subgraph mining that we use through the
rest of the paper. We also describe our problem statement. In section 4, we describe the
intuition behind our proposed approach called StreamFSM, as well as provide a pseudocode
version of the algorithm. In section 5.1, we discuss the datasets that we have used in this
paper. Then in section 5.2, we present the evaluation and the experimental results. Finally
in Section 6, we conclude the paper as well as describe future work.

2. Related Work

Previous research efforts have mostly been concentrated on developing frequent subgraph
mining algorithms for static graphs. Frequent subgraph discovery algorithms can be cat-
egorized into either complete or heuristic discovery algorithms. Complete algorithms like
SIGRAM (Kuramochi and Karypis, 2005) find all the frequent subgraphs that appear no
less than a user specified threshold value. Heuristic algorithms like SUBDUE (Cook and
Holder, 1994) and GRAMI (Elseidy et al., 2014) discover only a subset of all frequent sub-
graphs. The focus of the SUBDUE algorithm however was in discovering the subgraph
which compressed the input graph the most. However, parameters of this algorithm could
be tuned to make it output frequent subgraphs as well. SUBDUE is a heuristic discovery
algorithm. SIGRAM is a complete discovery algorithm which finds frequent subgraphs from
a large sparse graph.

The first frequent substructure based algorithm was designed by Inokuchi et al. (Inokuchi
et al., 2000) and was inspired by the Apriori algorithm for frequent itemset mining (Agrawal
and Srikant, 1994). Designed for the graph transaction scenario, it was called AGM and the
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basic idea behind it was to join two size k frequent graphs to generate size (k + 1) graph
candidates, and then check the frequency of these candidates separately. The algorithm
FSG proposed by Kuramochi and Karypis (Kuramochi and Karypis, 2004) also used the
Apriori technique. The problem with the Apriori technique is that the candidate genera-
tion takes significant time and space. Algorithms like gSpan (Yan and Han, 2002), MOFA
(Borgelt and Berthold, 2002), FFSM (Huan et al., 2003), SPIN (Huan et al., 2004) and
GASTON (Nijssen and Kok, 2004) were developed to avoid the overhead of the candidate
generation approach. They use a pattern growth technique which attempts to grow the
pattern from a single pattern directly.

Some work has also been done on subgraph mining for dynamic graphs or streaming
graphs. Bifet et al. (Bifet et al., 2011) compared several sliding window approaches to
mining streaming graph transactions for closed frequent subgraphs using a core set of closed
frequent subgraphs as a compressed representation of all the closed frequent subgraphs
discovered in the past. Aggarwal et al. (Aggarwal et al., 2010) propose two algorithms
for finding dense subgraphs in large graphs with streaming updates. However they assume
that the updates to the graph come in the form of edge disjoint subgraphs. Wackersreuther
et al. (Wackersreuther et al., 2010) proposed a method for finding frequent subgraphs in
dynamic networks, where a dynamic network is basically the union of time based snapshots
of a dynamic graph. Our work is distinguished from all these works as we attempt to find
subgraphs in a large graph which has streaming updates.

Berlingerio et al. (Berlingerio et al., 2009) devise a way to find graph evolution rules,
which are patterns that obey certain minimum support and confidence in evolving graphs.
They propose an algorithm called GERM that finds evolution rules from the frequent pat-
terns present in the graph. However, in their approach they assume that they have the
entire dynamic graph in the form of snapshots, where each snapshot represents the graph
at a certain point of time. This is distinguished by our work where we do not have the entire
graph all at once, and only see batches of updates to the graph. One of the challenges that
they faced in their work, which was similar to ours, was that the presence of high degree
nodes in real world graphs greatly increases the processing time of the transaction mining
component. We take the same approach as theirs.

Frequent subgraphs have been applied in solving related problems in dynamic networks.
Lahiri and Berger-Wolff (Lahiri and Berger-Wolf, 2007) apply a slightly modified concept
of FSG, and use it as an interestingness criterion to extract regions of graphs from a stream
of graph transactions (which represent snapshots of a dynamic graph), which they then
use to predict interactions in the whole network. The definition of frequent subgraph is
slightly different in their work as they constrain vertex labels to be unique. They have
converted the problem of FSG into a supervised learning problem, which does not really
discover new and unseen FSGs in later stages. In our scenario, however, we continuously
discover frequent subgraphs as batches stream in. Unlike the approach taken by Lahiri
and Berger-Wolff, our approach can detect changes to the set of frequent subgraphs in the
graph. In (Zhu et al., 2011), the authors propose SpiderMine to probabilistically find the
top k-large frequent subgraph patterns from a single large networks. Their focus is more on
finding larger frequent subgraphs patterns. Our work on the other hand focuses more on
finding frequent subgraphs in dynamic graphs, and our approach is not exclusively focused
on larger patterns.
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3. Technical Background

In this section we define the notation and terms related to our problem, and thus formally
define the problem of finding frequent subgraphs. The batch-number refers to the batch in
which an edge first appears. It is important to note that we do not allow multi-edges, even
if the multi-edges have different labels. Keeping this in mind, we define the following terms:

1. Dynamic graph: A dynamic graph is defined as a graph GD = (V,E, LV , LE , T )
where V is the set of vertices, E is the set of edges, LV is the set of vertex labels, LE

is the set of edge labels, and T is the set of discrete batch numbers. For a particular
batch of updates to GD, the value of T remains the same. Therefore a batch of
updates to GD can be defined as UB = (Vb, Eb, LVb

, LEb
), i.e., every batch of updates

contains new vertices, and new edges between existing or new vertices. Thus, we can
say GD =

⋃
UB.

2. Subgraph pattern: A subgraph pattern of a dynamic graph is a defined as Gs =
(Vs, Es, Lvs , Les) that is an subgraph of a dynamic graph GD = (V,E,LV , LE , T ),
where subgraph isomorphism holds if the labels match, without matching the batch-
numbers T .

3. Frequent subgraph pattern: A subgraph pattern Gsf , such that count
(
Gsf

)
≥ α,

where α is a user-specified frequency threshold, in a dynamic graph GD at time T , is
said to be a frequent subgraph pattern in the graph at time T .

Problem Definition: With these definitions in mind we formally define the problem of
finding frequent subgraphs in a dynamic graph with streaming updates as that of estimating
all Gsf for GD after every batch of updates are applied to GD.

4. Finding Frequent Subgraphs in Large Graphs with Streaming Updates

4.1. Complete Algorithm

Input: Set of edge updates Et+1, frequency threshold α
Output: Set of frequent subgraphs
Begin
C = set of instances for all possible subgraphs of the large graph
Et+1 = set of edge addition updates
for every e ∈ Et+1 do

for every c ∈ C do
c = c+ (e ∈ Et+1,s.t. e is incident on vertices in c), where c can be the empty set
Add c to C

end
Output cf from C where (max. number of non-overlapping instances of cf ) ≥ α

end
Algorithm 1: Complete algorithm for finding frequent subgraphs from set of edge updates
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Algorithm 1 describes a complete algorithm to find the set of frequent subgraphs that
are present in a large graph with the updates at time t + 1 in Et+1. In this algorithm,
for every instance of every possible subgraph, incident edges in Et+1 are added to these
subgraph instances if the edges are incident on any of the vertices in the instance. The
newly created subgraph instances after the additions then form the new version of C. The
frequencies of every subgraph are calculated from C using a maximum independent set
computation to obtain the maximum number of non-overlapping instances of the subgraph.
The frequencies that are greater than or equal to the frequency threshold α are output as
frequent subgraphs.

While this approach is complete, it is also computationally inefficient due to the presence
of maximum independent set counting, canonical label computation (or graph isomorphism
tests) to find all instances of a subgraph, and incidence testing for an edge in Et+1 with all
c ∈ C . In the next subsection, we describe an efficient algorithm that uses certain heuristics
to reduce the computational inefficiency of the frequent subgraph mining process.

4.2. Our Approach: StreamFSM

In StreamFSM, every time a new batch of updates comes in, we first add this batch to the
graph. Then using each edge as an anchor point we extract a sample of the neighborhood
around this edge. Any change made by the new edge will be made in this neighborhood.
However, sampling is not trivial, because no matter how large a neighborhood we sample,
there may still be some of the graph one hop away that has not been sampled. And this
portion of the graph could be forming an instance of a frequent subgraph with this edge. In
our approach we use a rather simple sampling scheme, where we select a number of the nodes
that are one hop away from each endpoint of this edge and then include all edges present
between these nodes. The rationale behind this sampling approach is that any changes to
the set of frequent subgraphs due to the addition of new edges will be restricted to the
locality of these new edges. Selecting the nodes, however, in our approach is dependent on
the domain. Domains that have a high frequency of large star-shaped patterns, where the
edges in the star have similar labels, require some pruning. In other domains we may be able
to select all the nodes in the immediate neighborhood of the edge. Once we have sampled a
portion of that edge’s neighborhood, we mark each edge in this neighborhood as ‘extracted’.
This will ensure that they are not extracted as part of a different edge’s neighborhood, and
the extracted neighborhoods remain edge disjoint. These extracted neighborhoods now
become graph transactions, which are input to a graph transaction miner like gSpan (Yan
and Han, 2002). This sampling scheme of course affects both the accuracy and the execution
time. Selecting a higher number of neighbors increases the running time and the accuracy,
while selecting a lower number of neighbors does the reverse. The graph transaction miner
will find the frequent subgraphs, their frequencies as well as their canonical labels. We
use the canonical labels as keys to store the subgraphs and their current frequencies in a
dictionary data structure.

We repeat the procedure detailed in the above paragraph for every batch of node and
edge updates to the graph. The dictionary data structure is updated with the counts of the
subgraphs that are frequent for each batch of updates. Subgraphs that have been discovered
previously have their counts incremented by their frequency in the set of graph transactions
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Input: Set of node/edge updates U
Data: Freq. threshold f , No. of max neighbors M , Extract Bit Reset Flag X, Graph

transaction frequency threshold ft
Output: Set of frequent subgraphs per batch FUi

Begin
G = ∅ //Main graph
C = ∅ //Map of enumerated subgraphs and counts
for every Ui ∈ U do

T = ∅ //Used to store the set of graph transactions corresponding to Ui

G = G ∪ Ui

for every edge e ∈ Ui do
Tj = e //Used to store the extracted sample
Mark e as extracted
E = E ∪ (M edges incident on v1 (v1 ∈ e) and not already marked as extracted)
E = E ∪ (M edges incident on v2 (v2 ∈ e) and not already marked as extracted)
E = E ∪ (all edges present between all v ∈ E in G with X not marked as extracted)
Tj = Tj ∪ E
T = T ∪ Tj
Mark all edges e, s.t. e ∈ G and e was selected to be in Tj as extracted

end
if X == true then

reset extract bits for all edges in G
end
FT = Subgraphs in T that are frequent with low frequency threshold ft found using a
graph transaction miner
Update C with the contents of FT

FUi = c ∈ C, s.t., count(c) ≥ f
Output FUi

end
Algorithm 2: StreamFSM algorithm
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derived from the current batch of updates. Newly discovered subgraphs have their counts
initialized in the dictionary by their currently discovered frequency. After every batch is
processed the subgraphs that are frequent so far are reported.

There are two important points to note at this stage. First, in the single large graph
setting the frequency of a subgraph is the number of non-overlapping instances of that
subgraph in the large graph. However, in the graph transaction setting, frequency is defined
as the number of transactions that contain at least one instance of that subgraph. Hence
it is difficult to translate the notion of a subgraph being ‘frequent’ in a single large graph
to that subgraph being ‘frequent’ in a set of transactions that only reflect certain regions of
the graph. Second, certain subgraphs may become frequent over time as the graph evolves.
These subgraphs would be frequent for the overall graph but not be frequent in any one set
of transactions. In order to get around these issues, we use a very low frequency threshold
for our graph transaction based frequent subgraph miner. While that increases our space
requirements, it ensures that we do not miss subgraphs whose frequency increases gradually.
We present the pseudo code of the StreamFSM algorithm in Algorithm 2.

In the following lines we explain the pseudo code of the algorithm. First, we initialize
the graph G to the empty graph and C, the map of enumerated subgraphs to empty. The
map of frequent subgraphs is indexed by the canonical label of the subgraph. U is a set
containing batches of updates. For every batch of updates Ui in U , we first initialize the
set of extracted graph transactions T to empty. We then add the current batch of updates
Ui to the graph G. For every edge e in the current batch of updates Ui, we extract a region
of the graph around this edge. We do this by extracting a 1-hop neighborhood around
both the endpoints of e. However we restrict this neighborhood to contain only a user
defined number of edges, M , around each vertex so that the resulting graph is smaller and
does not contain a large star-shape pattern (as star shapes significantly increase the time
required for processing of this transaction (Berlingerio et al., 2009)). After we have added
these edges along with the edge present in the update we also add any edges that might
be present between the vertices in this extracted region in the original graph. Once we
have extracted an edge, we mark it as extracted, so that no edge is extracted twice. This
extracted region is a small connected subgraph sample around the edge in the update. We
then add this sample to the list of transactions T . After we have done the above with all
the edges in the current batch of updates, we have a list of graph transactions. Depending
on the value of the extract flag, the algorithm will either reset the extract bits after a batch
is processed or not. We then use a frequent subgraph discovery algorithm (like gSpan) for
graph transactions to find the set of frequent subgraph patterns present in the set of graph
transactions with a very low frequency threshold, ft. While the frequency threshold, ft, for
the graph transactions is a user-defined parameter, we aim to come up with an approach to
automatically determine this value. This set of frequent subgraphs is stored in C, the set
of candidate frequent subgraphs. We output the subgraphs in C that have frequency above
the user specified frequency α. This process is repeated for every Ui, and C is updated to
reflect the current counts of the subgraphs.

173



Ray Holder Choudhury

Figure 1: Known substructures embedded in (left) Artificial Graph 1, and (right) Artificial
Graph 2.

5. Evaluation

5.1. Datasets

1. Artificial Graph 1 : We created an artificial graph with 10,000 vertices and 15,000
edges where the substructure in Figure 1 (left) comprises 83% of the graph, and the
rest of the edges randomly connect the instances of the substructure. The graph
is then divided into 15 parts containing approximately 1000 edges each. Each part
represents a batch of edge and vertex updates to the graph. The artificial subgraph
generator generates the frequent subgraphs first and the connecting edges later, hence
the partitioning does constrain the batches to containing entire frequent subgraphs
with some subgraphs falling on the boundary of the partitions. The motivation behind
this artificial graph is that it contains frequent subgraphs which are cyclical in nature.
We use this to test that our algorithm can discover cyclical patterns.

2. Artificial Graph 2 : We created an artificial graph with 10,000 vertices and 16,911
edges where the substructure in Figure 1 (right) comprises 83% of the graph, and
the rest of the edges randomly connect the instances of the substructure. The graph
is then divided into 17 parts containing approximately 1000 edges each. Each part
represents a batch of edge and vertex updates to the graph. The partitioning has
similar constraints as above. The motivation behind this artificial graph is that the
dominant frequent pattern is a star-shaped pattern with very little diversity in terms
of edge and node labels. Graphs which have a majority of star-shaped patterns with
low label diversity make frequent subgraph discovery computationally expensive.

3. Twitter : The raw Twitter dataset was created by streaming Twitter data using key-
words related to narcotics from January 2012 to February 2013. We created a graph
by connecting users who had communicated via tweets. The graph contains a total of
45,962 vertices and 57,949 edges. The node labels are only of type ’user’, and the edge
type can be ’retweet’, ’at’, or ’mention’. This graph was created with low diversity
in terms of node and/or edge labels as that makes frequent subgraph mining more
computationally expensive.
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4. HETREC : The Hetrec 2011 (Kantador, Brusilovsky and Kuflik, 2011) dataset uses
the MovieLens 10M 1 and connects the movies of the MovieLens dataset with their
Internet Movie Database 2 and Rotten Tomatoes website3 pages. This brings a wealth
of information into the dataset about every movie like actor names, director names,
countries, genres and more. From this dataset we create a graph with only movie,
actor and director information. A node in this graph can have a label of either ’movie’,
’director’ or ’actor’. While the labels are not unique, each node describes a unique
movie, actor or director. The actual name of the node can be traced using the node
identifier in a separate file which stores the movie, director and actor names. An edge
from a movie to a director would have a label of ’directed-by’ and an edge from a
movie to an actor would have a label ’acted-by’. The entire Hetrec dataset contains
data for 98 years. The resulting graph has 108,451 vertices and 241,897 edges. We
divide this data up into 98 batches, where each batch represents a year. Each update
to this graph comes in the form of a structure similar to Figure 1b, where the central
node represents a movie. The exterior nodes contain a single node representing the
’director’, and multiple nodes representing the ’actors’.

5. DBLP : The DBLP dataset is sourced from the DBLP citation network (DBLP) within
the period of 1959 2009. We create a graph where the nodes have labels of either
’author’ or one of 7,301 possible labels which indicate the publication venue. The
edge labels are either ’article-author’ or ’author-author’ indicating links between an
author and an authored article or an author and a co-author. We however only take
the first 100,000 edges and related nodes. The resulting graph has 42,975 vertices and
100,000 edges.

5.2. Experiments

We evaluate our proposed approach using the following questions:

1. In a scenario where we are getting continuous batches of updates, can we report the
current set of frequent subgraphs in a timely manner?

2. Is our approach capable of processing the data stream at speeds higher than the
stream-rate?

3. Is our approach accurate?

4. How does our approach compare against the state-of-the-art frequent subgraph miners
for large graphs?

5. How relevant are the patterns found?

In order to answer these questions, we evaluate our approach against the five datasets
discussed in Section 5.1. Our experimental settings are as follows: We implement our
algorithm in C++. We use two different hardware configurations in two different venues

1. http://www.grouplens.org
2. http://www.imdb.com
3. http://www.rottentomatoes.com
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to expedite our experiments. We use a Linux 2.6.32 with 32 cores, AMD Opteron(TM)
Processor 6272 with 1400 GHz clock speed and 64 GB memory to run experiments with
the DBLP dataset. We use a dual core Intel Pentium 4 with 3.40 GHz and 3.5 GB memory
for the rest of the experiments. The disparity between the two configurations is because we
sought to expedite our experiments by using these two different resources at our disposal.

Figure 2: Average batch running time vs. Number of neighbors sampled

In order to answer the first question, we ran StreamFSM with varying values for the
neighborhood sample parameter from 1-10 using four datasets. We measured the average
response time per batch in seconds, where the average response time is defined as the time
required to process a single batch of updates. We plot the average response time per batch
against the neighborhood sample parameter in Figure 2.

From Figure 2, we can see that the average response time remains roughly the same for all
the datasets except in the case of the HETREC dataset, where the running time decreases
and then increases gradually. We have currently not investigated the reason behind the
behavior of the HETREC dataset, but we believe that at low number of neighbor sampling,
we get more transactions which increases the running time. As the number of transactions
increase, we reach an optimal point with respect to the number of transactions and size
of each transaction. For all the others the constant running time happens because once a
particular edge is sampled, its extract bit is set and it is never sampled again. Thus the size
of the sampled transactions does not grow as the graph grows keeping the average batch
response times the same regardless of batch size.

In order to answer the second question, we measure the total running time for all five
datasets and compare the total time versus the total time interval in which the graph data
was collected. The total running time of the graphs are shown in Figures 3(left) and 3(right).
In Figure 3(left) we show the total running time when the extract bit for an edge is never
reset. In Figure 3(right) we show the plot for when we reset the extract bit for all the
edges after every batch is processed. This ensures that while the transactions created in the
same batch are edge disjoint, the transactions created across batches may have overlapping
edges. Since the neighborhood sampling for a particular batch has access to the current
accumulated graph to begin with, the transactions are larger. This results in a gradual
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Figure 3: Total running time (in secs) vs. Number of sampled neighbors (left) extract bit
not reset, (right) extract bit reset after every batch.

increase in execution time with increase in the number of sampled neighbors, as shown in
Figure 3(right).

The comparison between actual times and running time can only be done for the real
world datasets since the artificial graphs do not have any timing information. We perform
these comparisons with the Twitter and Hetrec dataset by listing the maximum running
time versus the evolution time of the network. We list these comparisons in Table 1. By
the results in Table 1, we can see that the StreamFSM algorithm can indeed process the
stream at rates much higher than the stream-rate. It also shows the limits of the algorithm’s
processing speed. Of course, if we were to encounter a Twitter stream, with a stream-rate
larger than our processing ability we would have to choose between timeliness and accuracy.

Table 1: Maximum running time vs. Evolution Time

Dataset Evolution Time Maximum Running Time

Twitter 1 year 4,817 seconds
Hetrec 98 years 12, 939 seconds

We measure accuracy, thus answering the third question, by verifying that for the two
artificial graphs the embedded patterns are discovered by the end of the stream of updates.
Looking at the output of the frequent subgraph miner, the embedded subgraphs are indeed
discovered as frequent subgraphs, with the frequency threshold set to 500, by the last batch
of updates. For Artificial Graph 2, however, since the patterns are in the form of a star
shaped structure, the number of neighbors parameter directly affects the accuracy of the
frequent subgraph miner in discovering the entire star shaped graph pattern.

We also compare the average running times of our algorithm versus the running times
taken by two publicly available large graph miners, GERM (Berlingerio et al., 2009) and
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Table 2: Comparison with GERM and SUBDUE using Twitter

StreamFSM GERM SUBDUE

Finished in 4817 sec Did not finish Finishes in 1305
with max neighbors set in more than 8 hrs seconds, but only gives

to 10 and found 23 freq subgraphs. found 9 freq subgraphs. 2 edge freq subgraphs.

SUBDUE (Cook and Holder, 1994) on the Twitter dataset. We list these in Table 2. As
we see our algorithm outperforms GERM and SUBDUE on this dataset. This dataset is
designed to be a disadvantage for frequent subgraph miners as it contains only one type of
node label, and two types of edge labels.

Figure 4: Frequent subgraph from (left) Twitter (right) Hetrec

We picked some of the patterns from the output of the frequent subgraph miner with
the frequency threshold set to 500 that seemed to be interesting in terms of both frequency
and size in order to discuss their relevance to the domains. The patterns from Twitter and
HETREC are shown in Figure 4. The pattern in Figure 4 (left) can be described as follows.
It contains a single user who mentions 11 other users in one or more tweets, and can thus
be considered to have a link with the other users. This kind of a pattern can be considered
for a social network like Twitter. Of course, this pattern is not a general characteristic of
Twitter as a whole, but can definitely be considered to be a characteristic of this particular
dataset. The pattern in Figure 4 (right) from HETREC, contains actors denoted by ’A’,
and movies denoted by ’M’ connected by a link labeled ’acted by’. The pattern shows a
single actor who has acted in 9 movies, and is connected by a single movie to three other
actors. As we can see, these patterns are quite relevant to the domain of the graph. Finding
patterns that we expect to see is another way that we determine that our algorithm does
indeed find the correct patterns.

6. Conclusions

In this paper we propose an algorithm called StreamFSM that is capable of continuously
finding the current set of frequent subgraphs in a dynamic labeled graph. Our algorithm is
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capable of doing this, without having to recompute all the frequent subgraphs from scratch,
by only looking at the regions in the graph that have been changed due to the current batch
of updates. We evaluate our algorithm on the 2 artificial graphs and 3 real world graphs
and show that our algorithm is capable of processing the data streams at speeds higher than
the stream rate, as well as give accurate results. We also compare our approach with the
state-of-the-art in frequent subgraph miners for static graphs and show that our algorithm
outperforms them in terms of interestingness of results and execution time taken together.
The drawback of our algorithm is mainly in terms of several parameters that have to be
tuned in order to get the optimal performance in terms of time and accuracy/interestingness
of results. Also we assume that we have access to the entire graph as the graph grows. This
assumption will not work in a real world streaming scenario. We plan to address these
drawbacks by coming up with a automated sampling and parameter selection strategy as
well as a windowing mechanism for the global graph in our future work. The datasets and
code for this project will be made available at our website 4.
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